Context-dependent extinction learning emerging from raw sensory inputs: A reinforcement learning approach

Author:

Walther Thomas,Diekmann Nicolas,Vijayabaskaran Sandhiya,Donoso José R.,Manahan-Vaughan Denise,Wiskott Laurenz,Cheng SenORCID

Abstract

AbstractThe context-dependence of extinction learning has been well studied and requires the hippocampus. However, the underlying neural mechanisms are still poorly understood. Using memory-driven reinforcement learning and deep neural networks, we developed a model that learns to navigate autonomously in biologically realistic VR environments based on raw camera inputs alone. Neither is context represented explicitly in our model, nor is context change signaled. We find that memory-intact agents learn distinct context representations, and develop ABA renewal, whereas memory-impaired agents do not. These findings reproduce the behavior of control and hippocampal animals, respectively. We therefore propose that the role of the hippocampus in the context-dependence of extinction learning might stem from its function in episodic-like memory and not in context-representation per se. We conclude that context-dependence can emerge from raw visual inputs.

Publisher

Cold Spring Harbor Laboratory

Reference41 articles.

1. Pavlov IP , Anrep GV. Conditioned Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex. Oxford University Press: Humphrey Milford; 1927.

2. Preventing the return of fear using reconsolidation updating and methylene blue is differentially dependent on extinction learning;Scientific reports,2017

3. Rethinking Extinction

4. Context and Behavioral Processes in Extinction: Table 1.

5. Factors Regulating the Effects of Hippocampal Inactivation on Renewal of Conditional Fear After Extinction;Learning & memory (Cold Spring Harbor, NY),2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3