Abstract
AbstractWhile case numbers remain low, population-wide control methods combined with efficient tracing, testing, and case isolation, offer the opportunity for New Zealand to contain and eliminate COVID-19. We use a stochastic model to investigate containment and elimination scenarios for COVID-19 in New Zealand, as the country considers the exit from its four week period of strong Level 4 population-wide control measures. In particular we consider how the effectiveness of its case isolation operations influence the outcome of lifting these strong population-wide controls. The model is parameterised for New Zealand and is initialised using current case data, although we do not make use of information concerning the geographic dispersion of cases and the model is not stratified for age or co-morbidities.We find that fast tracing and case isolation (i.e. operations that are sustained at rates comparable to that at the early stages of New Zealand’s response) can lead to containment or elimination, as long as strong population-wide controls remain in place. Slow case isolation can lead to containment (but not elimination) as long as strong Level 4 population-wide controls remain in place. However, we find that relaxing strong population-wide controls after four weeks will most likely lead to a further outbreak, although the speed of growth of this outbreak can be reduced by fast case isolation, by tracing, testing, or otherwise. We find that elimination is only likely if case isolation is combined with strong population-wide controls that are maintained for longer than four weeks.Further versions of this model will include an age-structured population as well as considering the effects of geographic dispersion and contact network structure, the possibility of regional containment combined with inter-regional travel restrictions, and the potential for harm to at risk communities and essential workers.Executive SummaryWhile New Zealand case numbers remain low, tracing, testing, and rapid case isolation, combined with population-wide control methods, offer an opportunity for the country to contain and eliminate COVID-19.Simulations using our model suggest that the current population-wide controls (Alert Level 4) have already had a significant effect on new case numbers (see figure below).We also find that fast case isolation, whether as a result of contact tracing, rapid testing, or otherwise, can lead to containment and possibly even elimination, when combined with strong population-wide controls.Slow case isolation can also lead to containment, but only as long as strong population wide controls remain in place. It is unlikely to lead to elimination.
Publisher
Cold Spring Harbor Laboratory
Reference19 articles.
1. Binny RN , Hendy, SC , James A , Lustig, A , Plank MJ , Steyn N , (2020. Effect of Level 4 control on R0: review of international COVID-19 cases. Forthcoming.
2. CDC (2020). Severe Outcomes Among Patients with Coronavirus Disease 2019 (COVID-19) — United States, February 12–March 16, 2020. Morbidity and Mortality Weekly Report. Retrieved from https://www.cdc.gov/mmwr/volumes/69/wr/mm6912e2.htm
3. Davies NG , Kucharski AJ , Eggo RM , Gimma A , Edmunds WJ (1 April 2020) The effect of non-pharmaceutical interventions on COVID-19 cases, deaths and demand for hospital services in the UK: a modelling study, London School of Hygiene & Tropical Medicine.
4. Ferguson NM et al & (16 March 2020). Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. Imperial College COVID-19 Response Team.
5. Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Arctic Basin Pollution;Constructive Processing of Microwave and Optical Data for Hydrogeochemical Applications;2023
2. Remote Sensing Technologies and Water Resources Monitoring;Constructive Processing of Microwave and Optical Data for Hydrogeochemical Applications;2023
3. Global Problems of Ecodynamics and Hydrogeochemistry;Constructive Processing of Microwave and Optical Data for Hydrogeochemical Applications;2023
4. Global Climate Change and Hydrogeochemistry;Constructive Processing of Microwave and Optical Data for Hydrogeochemical Applications;2023
5. Investigation of Regional Aquatic Systems;Constructive Processing of Microwave and Optical Data for Hydrogeochemical Applications;2023