Meeting radiation dosimetry capacity requirements of population-scale exposures by geostatistical sampling

Author:

Rogan Peter K.ORCID,Mucaki Eliseos J.,Lu Ruipeng,Shirley Ben C.,Waller Edward,Knoll Joan H.M.

Abstract

AbstractBackgroundAccurate radiation dose estimates are critical for determining eligibility for therapies by timely triaging of exposed individuals after large-scale radiation events. However, the universal assessment of a large population subjected to a nuclear spill incident or detonation is not feasible. Even with high-throughput dosimetry analysis, test volumes far exceed the capacities of first responders to measure radiation exposures directly, or to acquire and process samples for follow-on biodosimetry testing.AimTo significantly reduce data acquisition and processing requirements for triaging of treatment-eligible exposures in population-scale radiation incidents.MethodsPhysical radiation plumes modelled nuclear detonation scenarios of simulated exposures at 22 US locations. Models assumed only location of the epicenter and historical, prevailing wind directions/speeds. The spatial boundaries of graduated radiation exposures were determined by targeted, multistep geostatistical analysis of small population samples. Initially, locations proximate to these sites were randomly sampled (generally 0.1% of population). Empirical Bayesian kriging established radiation dose contour levels circumscribing these sites. Densification of each plume identified critical locations for additional sampling. After repeated kriging and densification, overlapping grids between each pair of contours of successive plumes were compared based on their diagonal Bray-Curtis distances and root-mean-square deviations, which provided criteria (<10% difference) to discontinue sampling.Results/ConclusionsWe modeled 30 scenarios, including 22 urban/high-density and 2 rural/low-density scenarios under various weather conditions. Multiple (3-10) rounds of sampling and kriging were required for the dosimetry maps to converge, requiring between 58 and 347 samples for different scenarios. On average, 70±10% of locations where populations are expected to receive an exposure ≥2Gy were identified. Under sub-optimal sampling conditions, the number of iterations and samples were increased and accuracy was reduced. Geostatistical mapping limits the number of required dose assessments, the time required, and radiation exposure to first responders. Geostatistical analysis will expedite triaging of acute radiation exposure in population-scale nuclear events.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3