Modeling layered non-pharmaceutical interventions against SARS-CoV-2 in the United States with Corvid

Author:

Chao Dennis L.ORCID,Oron Assaf P.,Srikrishna Devabhaktuni,Famulare Michael

Abstract

AbstractBackgroundThe novel coronavirus SARS-CoV-2 has rapidly spread across the globe and is poised to cause millions of deaths worldwide. There are currently no proven pharmaceutical treatments, and vaccines are likely over a year away. At present, non-pharmaceutical interventions (NPIs) are the only effective option to reduce transmission of the virus, but it is not clear how to deploy these potentially expensive and disruptive measures. Modeling can be used to understand the potential effectiveness of NPIs for both suppression and mitigation efforts.Methods and FindingsWe developed Corvid, an adaptation of the agent-based influenza model called FluTE to SARS-CoV-2 transmission. To demonstrate features of the model relevant for studying the effects of NPIs, we simulated transmission of SARS-CoV-2 in a synthetic population representing a metropolitan area in the United States. Transmission in the model occurs in several settings, including at home, at work, and in schools. We simulated several combinations of NPIs that targeted transmission in these settings, such as school closures and work-from-home policies. We also simulated three strategies for testing and isolating symptomatic cases. For our demonstration parameters, we show that testing followed by home isolation of ascertained cases reduced transmission by a modest amount. We also show how further reductions may follow by isolating cases in safe facilities away from susceptible family members or by quarantining all family members to prevent transmission from likely infections that have yet to manifest.ConclusionsModels that explicitly include settings where individuals interact such as the home, work, and school are useful for studying the effectiveness of NPIs, as these are more dependent on community structure than pharmaceutical interventions such as vaccination. Corvid can be used to help evaluate complex combinations of interventions, although there is no substitute for real-world observations. Our results on NPI effectiveness summarize the behavior of the model for an assumed set of parameters for demonstration purposes. Model results can be sensitive to the assumptions made about disease transmission and the natural history of the disease, both of which are not yet sufficiently characterized for SARS-CoV-2 for quantitative modeling. Models of SARS-CoV-2 transmission will need to be updated as the pathogen becomes better-understood.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3