From ATOM to GradiATOM: Cortical gradients support time and space processing as revealed by a meta-analysis of neuroimaging studies

Author:

Cona Giorgia,Wiener Martin,Scarpazza Cristina

Abstract

AbstractAccording to the ATOM (A Theory Of Magnitude), formulated by Walsh more than fifteen years ago, there is a general system of magnitude in the brain that comprises regions, such as the parietal cortex, shared by space, time and other magnitudes (Walsh, 2003).The present meta-analysis of neuroimaging studies used the Activation Likelihood Estimation (ALE) method in order to determine the set of regions commonly activated in space and time processing and to establish the neural activations specific to each magnitude domain. Following PRISMA guidelines, we included in the analysis a total of 112 and 114 experiments, exploring space and time processing, respectively.We clearly identified the presence of a system of brain regions commonly recruited in both space and time and that includes: bilateral insula, the pre-supplementary motor area (SMA), the right frontal operculum and the intraparietal sulci. These regions might be the best candidates to form the core magnitude neural system. Surprisingly, along each of these regions but the insula, ALE values progressed in a cortical gradient from time to space. The SMA exhibited an anterior-posterior gradient, with space activating more-anterior regions (i.e., pre-SMA) and time activating more-posterior regions (i.e., SMA-proper). Frontal and parietal regions showed a dorsal-ventral gradient: space is mediated by dorsal frontal and parietal regions, and time recruits ventral frontal and parietal regions.Our study supports but also expands the ATOM theory. Therefore, we here re-named it the ‘GradiATOM’ theory (Gradient Theory of Magnitude), proposing that gradient organization can facilitate the transformations and integrations of magnitude representations by allowing space- and time-related neural populations to interact with each other over minimal distances.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3