Performing risk stratification for COVID-19 when individual level data is not available – the experience of a large healthcare organization

Author:

Barda NoamORCID,Riesel Dan,Akriv Amichay,Levi Joseph,Finkel Uriah,Yona Gal,Greenfeld Daniel,Sheiba Shimon,Somer Jonathan,Bachmat Eitan,Rothblum Guy N.,Shalit Uri,Netzer Doron,Balicer Ran,Dagan NoaORCID

Abstract

AbstractWith the global coronavirus disease 2019 (COVID-19) pandemic, there is an urgent need for risk stratification tools to support prevention and treatment decisions. The Centers for Disease Control and Prevention (CDC) listed several criteria that define high-risk individuals, but multivariable prediction models may allow for a more accurate and granular risk evaluation. In the early days of the pandemic, when individual level data required for training prediction models was not available, a large healthcare organization developed a prediction model for supporting its COVID-19 policy using a hybrid strategy. The model was constructed on a baseline predictor to rank patients according to their risk for severe respiratory infection or sepsis (trained using over one-million patient records) and was then post-processed to calibrate the predictions to reported COVID-19 case fatality rates. Since its deployment in mid-March, this predictor was integrated into many decision-processes in the organization that involved allocating limited resources. With the accumulation of enough COVID-19 patients, the predictor was validated for its accuracy in predicting COVID-19 mortality among all COVID-19 cases in the organization (3,176, 3.1% death rate). The predictor was found to have good discrimination, with an area under the receiver-operating characteristics curve of 0.942. Calibration was also good, with a marked improvement compared to the calibration of the baseline model when evaluated for the COVID-19 mortality outcome. While the CDC criteria identify 41% of the population as high-risk with a resulting sensitivity of 97%, a 5% absolute risk cutoff by the model tags only 14% to be at high-risk while still achieving a sensitivity of 90%. To summarize, we found that even in the midst of a pandemic, shrouded in epidemiologic “fog of war” and with no individual level data, it was possible to provide a useful predictor with good discrimination and calibration.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3