Affinity proteomic dissection of the human nuclear cap-binding complex interactome

Author:

Dou YuhuiORCID,Kalmykova SvetlanaORCID,Pashkova Maria,Oghbaie MehrnooshORCID,Jiang Hua,Molloy Kelly R.,Chait Brian T.ORCID,Rout Michael P.ORCID,Fenyö DavidORCID,Jensen Torben HeickORCID,Altukhov IlyaORCID,LaCava JohnORCID

Abstract

ABSTRACTA 5’, 7-methylguanosine cap is a quintessential feature of RNA polymerase II-transcribed RNAs, and a textbook aspect of co-transcriptional RNA processing. The cap is bound by the cap-binding complex (CBC), canonically consisting of nuclear cap-binding proteins 1 and 2 (NCBP1/2). The CBC has come under renewed investigative interest in recent years due to its participation in RNA-fate decisions via interactions with RNA productive factors as well as with adapters of the degradative RNA exosome - including the proteins SRRT (a.k.a. ARS2) and ZC3H18, and macromolecular assemblies such as the nuclear exosome targeting (NEXT) complex and the poly(A) exosome targeting (PAXT) connection. A novel cap-binding protein, NCBP3, was recently proposed to form an alternative, non-canonical CBC together with NCBP1, and to interact with the canonical CBC along with the protein SRRT. The theme of post-transcriptional RNA fate, and how it relates to co-transcriptional ribonucleoprotein assembly is abundant with complicated, ambiguous, and likely incomplete models. In an effort to clarify the compositions of NCBP1-, 2-, and 3-related macromolecular assemblies, including their intersections and differences, we have applied an affinity capture-based interactome screening approach, where the experimental design and data processing have been modified and updated to identify interactome differences between targets under a range of experimental conditions, in the context of label-free quantitative mass spectrometry. This study generated a comprehensive view of NCBP-protein interactions in the ribonucleoprotein context and demonstrates the potential of our approach to benefit the interpretation of complex biological pathways.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. NCBP3: A Multifaceted Adaptive Regulator of Gene Expression;Trends in Biochemical Sciences;2021-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3