Abstract
AbstractGrowth hormone-activated STAT5b is an essential regulator of sex-differential gene expression in mouse liver, however, its impact on hepatic gene expression and epigenetic responses is poorly understood. Here, we found a substantial, albeit incomplete loss of liver sex bias in hepatocyte-specific STAT5a/STAT5b (collectively, STAT5)-deficient mouse liver. In male liver, many male-biased genes were down regulated in direct association with the loss of STAT5 binding; many female-biased genes, which show low STAT5 binding, were de-repressed, indicating an indirect mechanism for repression by STAT5. Extensive changes in CpG-methylation were seen in STAT5-deficient liver, where sex differences in DNA methylation were abolished at 88% of ~1,500 differentially-methylated regions, largely due to an increase in methylation at the hypomethylated sites. STAT5-dependent CpG-hypomethylation was rarely found at proximal promoters of STAT5-dependent genes. Rather, STAT5 primarily regulated the methylation of distal enhancers, where STAT5 deficiency induced widespread hypermethylation at genomic regions enriched for accessible chromatin, enhancer histone marks (H3K4me1, H3K27ac), STAT5 binding, and DNA motifs for STAT5 and other transcription factors implicated in liver sex differences. In conclusion, the sex-dependent binding of STAT5 to liver chromatin is closely linked to sex-dependent demethylation of distal regulatory elements mapping to STAT5-dependent genes important for liver sex bias.
Publisher
Cold Spring Harbor Laboratory