BRAVE-NET: Fully Automated Arterial Brain Vessel Segmentation In Patients with Cerebrovascular Disease

Author:

Hilbert AdamORCID,Madai Vince I.ORCID,Akay Ela M.,Aydin Orhun U.ORCID,Behland Jonas,Sobesky Jan,Galinovic IvanaORCID,Khalil Ahmed A.ORCID,Taha Abdel A.ORCID,Wuerfel Jens,Dusek PetrORCID,Niendorf ThoralfORCID,Fiebach Jochen B.ORCID,Frey DietmarORCID,Livne MichelleORCID

Abstract

AbstractIntroductionArterial brain vessel assessment is crucial for the diagnostic process in patients with cerebrovascular disease. Noninvasive neuroimaging techniques such as time-of-flight (TOF) magnetic resonance angiography (MRA) imaging are applied in the clinical routine to depict arteries. They are, however, only visually assessed. Fully automated vessel segmentation integrated into the clinical routine could facilitate the time-critical diagnosis of vessel abnormalities and might facilitate the identification of valuable biomarkers for cerebrovascular events. In the present work, we developed and validated a new deep learning model for vessel segmentation, coined BRAVE-NET, on a large aggregated dataset of patients with cerebrovascular diseases.MethodsBRAVE-NET is a multiscale 3-D convolutional neural network (CNN) model developed on a dataset of 264 patients from 3 different studies enrolling patients with cerebrovascular diseases. A context path, dually capturing high- and low-resolution volumes, and deep supervision were implemented. The BRAVE-NET model was compared to a baseline Unet model and variants with only context paths and deep supervision, respectively. The models were developed and validated using high-quality manual labels as ground truth. Next to precision and recall, the performance was assessed quantitatively by Dice coefficient (DSC); average Hausdorff distance (AVD); 95- percentile Hausdorff distance (95HD) and via visual qualitative rating.ResultsThe BRAVE-NET performance surpassed the other models for arterial brain vessel segmentation with a DSC = 0.931, AVD = 0.165 and 95HD = 29.153. The BRAVE-NET model was also the most resistant towards false labelings as revealed by the visual analysis. The performance improvement is primarily attributed to the integration of the multiscaling context path into the 3-D Unet and to a lesser extent to the deep supervision architectural component.DiscussionWe present a new state-of-the-art of arterial brain vessel segmentation tailored to cerebrovascular pathology. We provide an extensive experimental validation of the model using a large aggregated dataset encompassing a large variability of cerebrovascular disease. The framework provides the technological foundation for improving the clinical workflow and can serve as a biomarker extraction tool in cerebrovascular diseases.

Publisher

Cold Spring Harbor Laboratory

Reference55 articles.

1. Abadi, M. , Agarwal, A. , Barham, P. , Brevdo, E. , Chen, Z. , Citro, C. , et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. 19.

2. Brain blood vessel segmentation using line-shaped profiles

3. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3