COVID-19 epidemic in Malaysia: Impact of lockdown on infection dynamics

Author:

Salim NaomieORCID,Chan Weng HoweORCID,Mansor ShuhaimiORCID,Nazira Bazin Nor Erne,Amaran SafiyaORCID,Mohd Faudzi Ahmad AthifORCID,Zainal AnazidaORCID,Huspi Sharin Hazlin,Jiun Hooi Eric Khoo,Shithil Shaekh Mohammad

Abstract

AbstractCOVID-19 epidemic in Malaysia started as a small wave of 22 cases in January 2020 through imported cases. It was followed by a bigger wave mainly from local transmissions resulting in 651 cases. The following wave saw unexpectedly three digit number of daily cases following a mass gathering urged the government to choose a more stringent measure. A limited lock-down approach called Movement Control Order (MCO) was immediately initiated to the whole country as a way to suppress the epidemic trajectory. The lock-down causes a major socio-economic disruption thus the ability to forecast the infection dynamic is urgently required to assist the government on timely decisions. Limited testing capacity and limited epidemiological data complicate the understanding of the future infection dynamic of the COVID-19 epidemic. Three different epidemic forecasting models was used to generate forecasts of COVID-19 cases in Malaysia using daily reported cumulative case data up until 1st April 2020 from the Malaysia Ministry of Health. The forecasts were generated using a Curve Fitting Model with Probability Density Function and Skewness Effect, the SIR Model, and a System Dynamic Model. Method one based on curve fitting with probability density function estimated that the peak will be on 19th April 2020 with an estimation of 5,637 infected persons. Method two based on SIR Model estimated that the peak will be on 20th - 31st May 2020 if Movement Contro (MCO) is in place with an estimation of 630,000 to 800,000 infected persons. Method three based on System Dynamic Model estimated that the peak will be on 17th May 2020 with an estimation of 22,421 infected persons. Forecasts from each of model suggested the epidemic may peak between middle of April to end of May 2020.

Publisher

Cold Spring Harbor Laboratory

Reference32 articles.

1. World Health Organization. Coronavirus Disease 2019 (COVID-19): situation report, 75. Available online: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200404-sitrep-75-covid-19.pdf?sfvrsn=99251b2b_2. (accessed on 4th April 2020)

2. Lipstichh M ; Swerdlow, D.L. Defining the epidemiology of Covid 19 – studies needed. New England Journal of Medicine 2020.

3. World Health Organization. Report of the Who-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Available online: https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf. (accessed on 1st April 2020)

4. Ferguson, N. , Laydon, D. , Nedjati Gilani, G. , Imai, N. , Ainslie, K. , Baguelin, M. , Bhatia, S. , Boonyasiri, A. , Cucunuba Perez, ZULMA. , Cuomo-Dannenburg, G. , Dighe, A. , Dorigatti, I. , Fu, H. , Gaythorpe, K. , Green, W. , Hamlet, A. , Hinsley, W. , Okell, L. , Van Elsland, S. , Thompson, H. , Verity, R. , Volz, E. , Wang, H. , Wang, Y. , Walker, P. , Winskill, P. , Whittaker, C. , Donnelly, C. , Riley, S. , Ghani, A. Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. 2020. Imperial College COVID-19 Response Team. https://doi.org/10.25561/77482

5. Influenza Cataclysm, 1918

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3