Structured sampling of olfactory input by the fly mushroom body

Author:

Zheng ZhihaoORCID,Li Feng,Fisher Corey,Ali Iqbal J.,Sharifi Nadiya,Calle-Schuler Steven,Hsu Joseph,Masoodpanah Najla,Kmecova Lucia,Kazimiers Tom,Perlman EricORCID,Nichols Matthew,Li Peter H.ORCID,Jain VirenORCID,Bock Davi D.ORCID

Abstract

AbstractAssociative memory formation and recall in the adult fruit fly Drosophila melanogaster is subserved by the mushroom body (MB). Upon arrival in the MB, sensory information undergoes a profound transformation. Olfactory projection neurons (PNs), the main MB input, exhibit broadly tuned, sustained, and stereotyped responses to odorants; in contrast, their postsynaptic targets in the MB, the Kenyon cells (KCs), are nonstereotyped, narrowly tuned, and only briefly responsive to odorants. Theory and experiment have suggested that this transformation is implemented by random connectivity between KCs and PNs. However, this hypothesis has been challenging to test, given the difficulty of mapping synaptic connections between large numbers of neurons to achieve a unified view of neuronal network structure. Here we used a recent whole-brain electron microscopy (EM) volume of the adult fruit fly to map large numbers of PN- to-KC connections at synaptic resolution. Comparison of the observed connectome to precisely defined null models revealed unexpected network structure, in which a subset of food-responsive PN types converge on individual downstream KCs more frequently than expected. The connectivity bias is consistent with the neurogeometry: axons of the overconvergent PNs tend to arborize near one another in the MB main calyx, making local KC dendrites more likely to receive input from those types. Computational modeling of the observed PN-to-KC network showed that input from the overconvergent PN types is better discriminated than input from other types. These results suggest an ‘associative fovea’ for olfaction, in that the MB is wired to better discriminate more frequently occurring and ethologically relevant combinations of food-related odors.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3