Genome-wide local ancestries discriminate homoploid hybrid speciation from secondary introgression in the red wolf (Canidae:Canis rufus)

Author:

Chafin Tyler K.ORCID,Douglas Marlis R.,Douglas Michael E.

Abstract

AbstractHybridization is well recognized as a driver of speciation, yet it often remains difficult to parse phylogenomically in that post-speciation gene flow frequently supersedes an ancestral signal. Here we examined how interactions between recombination and gene flow shaped the phylogenomic landscape of red wolf to create non-random retention of introgressed ancestry. Our re-analyses of genomic data recapitulate fossil evidence by demonstrating red wolf was indeed extant and isolated prior to more recent admixture with other North American canids. Its more ancient divergence, now sequestered within low-recombinant regions on the X-chromosome (i.e., chromosomal ‘refugia’), is effectively masked by multiple, successive waves of secondary introgression that now dominate its autosomal ancestry. These interpretations are congruent with more theoretical explanations that describe the manner by which introgression can be localized within the genome through recombination and selection. They also tacitly support the large-X effect, i.e., the manner by which loci that contribute to reproductive isolation can be enriched on the X-chromosome. By contrast, similar, high recombinant regions were also found as enriched within very shallow gene trees, thus reflecting post-speciation gene flow and a compression of divergence estimates to 1/20thof that found in recombination ‘cold spots’. Our results effectively reconcile conflicting hypotheses regarding the impact of hybridization on evolution of North American canids and support an emerging framework within which the analysis of a phylogenomic landscape structured by recombination can be used to successfully address the macroevolutionary implications of hybridization.

Publisher

Cold Spring Harbor Laboratory

Reference129 articles.

1. Hybridization and speciation

2. The problems with hybrids: setting conservation guidelines

3. A model-based method for identifying species hybrids using multilocus data;Genetics,2002

4. The multilayer nature of ecological networks

5. From FastQ data to high-confidence variant calls: The genome analysis toolkit best practices pipeline;Curr. Protoc. Bioinforma,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3