Anthrax Toxin Translocation Complex Reveals insight into the Lethal Factor Unfolding and Refolding Mechanism

Author:

Machen Alexandra JORCID,Fisher Mark T,Freudenthal Bret DORCID

Abstract

AbstractTranslocation is essential to the anthrax toxin mechanism. Protective antigen (PA), the translocon component of this AB toxin, forms an oligomeric pore with three key clamp sites that aid in the efficient entry of lethal factor (LF) or edema factor (EF), the enzymatic components of the toxin, into the cell. LF and EF translocate through the PA pore (PApore) with the pH gradient between the endosome and the cytosol facilitating rapid translocation in vivo. Structural details of the translocation process have remained elusive despite their biological importance. To overcome the technical challenges of studying translocation intermediates, we developed a novel method to immobilize, transition, and stabilize anthrax toxin to mimic important physiological steps in the intoxication process. Here, we report a cryoEM snapshot of PApore translocating the N-terminal domain of LF (LFN). The resulting 3.3 Å structure of the complex shows density of partially unfolded LFN near the canonical PApore binding site as well as in the α clamp, the Φ clamp, and the charge clamp. We also observe density consistent with an α helix emerging from the 100 Å β barrel channel suggesting LF secondary structural elements begin to refold in the pore channel. We conclude the anthrax toxin β barrel aids in efficient folding of its enzymatic payload prior to channel exit. Our hypothesized refolding mechanism has broader implications for pore length of other protein translocating toxins.Significance StatementToxins like the anthrax toxin aid bacteria in establishing an infection, evading the immune system, and proliferating inside a host. The anthrax toxin, a proteinaceous AB toxin secreted by Bacillus anthracis, consists of lethal factor and protective antigen. In this work, we explore the molecular details of lethal factor translocation through protective antigen pore necessary for cellular entry. Our cryo electron microscopy results provide evidence of lethal factor secondary structure refolding prior to protective antigen pore exit. Similar to the ribosome exit tunnel, the toxin pore channel likely contributes to native folding of lethal factor. We predict other AB toxins with extended pores also initiate substrate refolding inside the translocon for effective intoxication during bacterial infection, evasion, and proliferation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3