Isoform-specific regulation of HCN4 channels by a family of endoplasmic reticulum proteins

Author:

Peters Colin H.ORCID,Myers Mallory E.,Juchno Julie,Haimbaugh Charlie,Bichraoui Hicham,Du Yanmei,Bankston John R.,Walker Lori A,Proenza Catherine

Abstract

AbstractIon channels in excitable cells function in macromolecular complexes in which auxiliary proteins modulate the biophysical properties of the pore-forming subunits. Hyperpolarization-activated, cyclic nucleotide-sensitive HCN4 channels are critical determinants of membrane excitability in cells throughout the body, including thalamocortical neurons and cardiac pacemaker cells. We previously showed that the properties of HCN4 channels differ dramatically in different cell types, possibly due to the endogenous expression of auxiliary proteins. Here, we report the discovery of a family of endoplasmic reticulum transmembrane proteins that interact with and modulate HCN4. Lymphoid-restricted membrane protein (LRMP, Jaw1) and inositol trisphosphate receptor-associated guanylate kinase substrate (IRAG, Mrvi1, Jaw1L) are homologous proteins with small ER luminal domains and large cytoplasmic domains. Despite their homology, LRMP and IRAG have distinct effects on HCN4. LRMP is a loss-of-function modulator that inhibits the canonical depolarizing shift in the voltage-dependence of HCN4 activation in response to binding of cAMP. In contrast, IRAG causes a gain of HCN4 function by depolarizing the basal voltage-dependence of activation in the absence of cAMP. The mechanisms of action of LRMP and IRAG are novel; they are independent of trafficking and cAMP binding, and they are specific to the HCN4 isoform. We also found that IRAG is highly expressed in the mouse sinoatrial node where computer modeling predicts that its presence increases HCN4 availability. Our results suggest important roles for LRMP and IRAG in regulation of cellular excitability and as tools for advancing mechanistic understanding of HCN4 channel function.Significance statementThe pore-forming subunits of ion channels are regulated by auxiliary interacting proteins. Hyperpolarization-activated cyclic nucleotide-sensitive isoform 4 (HCN4) channels are critical determinants of electrical excitability in many types of cells including neurons and cardiac pacemaker cells. Here we report the discovery of two novel HCN4 regulatory proteins. Despite their homology, the two proteins — lymphoid-restricted membrane protein (LRMP) and inositol trisphosphate receptor-associated guanylate kinase substrate (IRAG) — have opposing effects on HCN4, causing loss- and gain-of-function, respectively. LRMP and IRAG are expected to play critical roles in regulation of physiological processes ranging from wakefulness to heart rate through their modulation of HCN4 channel function.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3