Programmed trade-offs in protein folding networks

Author:

Pechmann SebastianORCID

Abstract

Maintaining protein homeostasis, i.e. a folded and functional proteome, depends on the efficient allocation of cellular protein quality control resources. Decline and dysregulation of protein homeostasis are directly associated to conditions of aging and neurodegeneration. Molecular chaperones as specialized protein quality control enzymes form the core of protein homeostasis. However, how chaperones selectively interact with their substrate proteins thus allocate their overall limited capacity remains poorly understood. Here, I present an integrated analysis of sequence and structural determinants that define interactions of the Saccharomyces cerevisiae Hsp70 Ssb. Structural homologues that differentially interact with Ssb for de novo folding were found to systematically differ in complexity of their folding landscapes, selective use of nonoptimal codons, and presence of short discriminative sequences. All analyzed characteristics contributed to the prediction of Ssb interactions in highly complementary manner, highlighting pervasive trade-offs in chaperone-assisted protein folding landscapes. However, short discriminative sequences were found to contribute by far the strongest signal towards explaining Ssb interactions. This observation suggested that some chaperone interactions may be directly programmed in the amino acid sequences rather than responding to folding challenges, possibly for regulatory advantages.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3