A novel specific artificial intelligence-based method to identify COVID-19 cases using simple blood exams

Author:

Soares FelipeORCID

Abstract

BackgroundThe SARS-CoV-2 virus responsible for COVID-19 poses a significant challenge to healthcare systems worldwide. Despite governmental initiatives aimed at containing the spread of the disease, several countries are experiencing unmanageable increases in the demand for ICU beds, medical equipment, and larger testing capacity. Efficient COVID-19 diagnosis enables healthcare systems to provide better care for patients while protecting caregivers from the disease. However, many countries are constrained by the limited amount of test kits available, lack of equipment and trained professionals. In the case of patients visiting emergency rooms (ERs) with a suspect of COVID-19, prompt diagnosis may improve the outcome and even provide information for efficient hospital management. In such a context, a quick, inexpensive and readily available test to perform an initial triage in ERs could help to smooth patient flow, provide better patient care, and reduce the backlog of exams.MethodsIn this Case-control quantitative study, we developed a strategy backed by artificial intelligence to perform an initial screening of suspect COVID-19 patients. We developed a machine learning classifier that takes widely available simple blood exams as input and classifies samples as likely to be positive (having SARS-CoV-2) or negative (not having SARS-CoV-2). Based on this initial classification, positive cases can be referred for further highly sensitive testing (e.g. CT scan, or specific antibodies). We used publicly available data from the Albert Einstein Hospital in Brazil from 5,644 patients. Focusing on simple blood exam figures as main predictors, a sample of 599 subjects that had the fewest missing values for 16 common exams were selected. From these 599 patients, 81 tested positive for SARS-CoV-2 (determined by RT-PCR). Based on the reduced dataset, we built an artificial intelligence classification framework, ER-CoV, aiming at determining if suspect patients arriving in ER were likely to be negative for SARS-CoV-2, that is, to predict if that suspect patient is negative for COVID-19. The primary goal of this investigation is to develop a classifier with high specificity and high negative predictive values, with reasonable sensitivity.FindingsWe identified that our AI framework achieved an average specificity of 85.98% [95%CI: 84.94 – 86.84] and negative predictive value (NPV) of 94.92% [95%CI: 94.37% – 95.37%]. Those values are completely aligned with our goal of providing an effective low-cost system to triage suspect patients in ERs. As for sensitivity, our model achieved an average of 70.25% [95%CI: 66.57% – 73.12%] and positive predictive value (PPV) of 44.96% [95%CI: 43.15% – 46.87%]. The area under the curve (AUC) of the receiver operating characteristic (ROC) was 86.78% [95%CI: 85.65% – 87.90%]. An error analysis (inspection of which patients were misclassified) identified that, on average, 28% of the false negative results would have been hospitalized anyway; thus the model is making mistakes for severe cases that would not be overlooked, partially mitigating the fact that the test is not highly sensitive. All code for our AI model, called ER-CoV is publicly available at https://github.com/soares-f/ER-CoV.InterpretationBased on the capacity of our model to accurately predict which cases are negative from suspect patients arriving in emergency rooms, we envision that this framework may play an important role in patient triage. Probably the most important outcome is related to testing availability, which at this point is extremely low in many countries. Considering the achieved specificity, we could reduce by at least 90% the number of SARS-CoV-2 tests performed in emergency rooms, with around 5% chance of getting a false negative. The second important outcome is related to patient management in hospitals. Patients predicted as positive by our framework could be immediately separated from other patients while waiting for the results of confirmatory tests. This could reduce the spread rate within hospitals since in many of them all suspect cases are kept in the same ward. In Brazil, where the data was collected, rate infection is starting to quickly spread and the lead time of a SARS-CoV-2 may be up to 2 weeks.

Publisher

Cold Spring Harbor Laboratory

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. COVID-19 IgG antibodies detection based on CNN-BiLSTM algorithm combined with fiber-optic dataset;Journal of Virological Methods;2024-12

2. GACEMV: An ensemble learning framework for constructing COVID-19 diagnosis and prognosis models;Biomedical Signal Processing and Control;2024-08

3. Enhancing early detection of COVID-19 with machine learning and blood test results;Multimedia Tools and Applications;2024-04-18

4. Application of Artificial Intelligence in NeuroCOVID-19;Nutritional Neurosciences;2024

5. AI based Clinical Analysis of COVID-19 Infected Patients;The Role of AI, IoT and Blockchain in Mitigating the Impact of COVID-19;2023-11-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3