Glycan analysis of human neutrophil granules implicates a maturation-dependent glycosylation machinery

Author:

Venkatakrishnan Vignesh,Dieckmann Regis,Loke Ian,Tjondro Harry,Chatterjee Sayantani,Bylund Johan,Thaysen-Andersen Morten,Karlsson Niclas G.,Karlsson-Bengtsson Anna

Abstract

AbstractProtein glycosylation is essential to trafficking and immune functions of human neutrophils. During granulopoeisis in the bone marrow, distinct neutrophil granules are successively formed. Distinct receptors and effector proteins, many of which are glycosylated, are targeted to each type of granule according to their time of expression, a process called ‘targeting-by-timing’. Therefore, these granules are time capsules reflecting different times of maturation that can be used to understand how glycosylation evolves during granulopoiesis. Herein, neutrophil subcellular granules were fractionated by Percoll density gradient centrifugation andN- andO-glycans present in each compartment were analyzed by liquid chromatography and tandem mass spectrometry. We found abundant paucimannosidicN-glycans and lack ofO-glycans in early-formed azurophil granules (AG), whereas later-formed specific and gelatinase granules (SG and GG) contained complexN- andO-glycans with remarkably elongatedN-acetyllactosamine repeats with Lewis-x and sialyl-Lewis-x epitopes. Many glycans identified are unique to neutrophils and their complexity increased progressively from AG to SG and then to GG, suggesting temporal changes in the glycosylation machinery indicative of ‘glycosylation-by-timing’ during granulopoiesis. In summary, this comprehensive neutrophil granule glycome map, the first of its kind, highlights novel granule-specific glycosylation features and is a crucial first step towards a better understanding of the mechanisms regulating protein glycosylation during neutrophil granulopoiesis and a more detailed understanding of neutrophil biology and function.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3