Abstract
AbstractFungi have developed the ability to overcome extreme growth conditions and thrive in hostile environments. The model fungusAspergillus nidulanstolerates, for example, ambient alkalinity up to pH 10 or molar concentrations of multiple cations. The ability to grow under alkaline pH or saline stress depends on the effective function of, at least, three regulatory pathways mediated by high hierarchy zinc-finger transcription factors: PacC, which mediates the ambient pH regulatory pathway, the calcineurin-dependent CrzA and the cation-homeostasis responsive factor SltA. Using RNA sequencing, we determined the effect of external pH alkalinisation or sodium stress on gene expression. Data show that each condition triggers transcriptional responses with a low degree of overlap. By sequencing the transcriptomes of the null mutant, the role of SltA in the abovementioned homeostasis mechanisms was also studied. Results show that the transcriptional role of SltA is wider than initially expected and implies, for example, the positive control of the PacC-dependent ambient pH regulatory pathway. Overall, our data strongly suggest that the stress-response pathways in fungi include some common but mostly exclusive constituents, and that there is a hierarchy of authority among the main regulators of stress response, with SltA controllingpacCexpression at least inA. nidulans.
Publisher
Cold Spring Harbor Laboratory