ACE 2 Coding Variants: A Potential X-linked Risk Factor for COVID-19 Disease

Author:

Gibson William T.ORCID,Evans Daniel MORCID,An JianghongORCID,Jones Steven JMORCID

Abstract

AbstractViral genetic variants are widely known to influence disease progression among infected humans. Given the recent and rapid emergence of pandemic SARS-CoV-2 infection, the cause of COVID-19 disease, viral protein variants have attracted research interest. However, little has yet been written about genetic risk factors among human hosts. Human genetic variation has proven to affect disease progression and outcome for important diseases such as HIV infection and malaria infestation. The fact that the human ACE2 protein is encoded on the X chromosome means that males who carry rare ACE2 coding variants will express those variants in all ACE2-expressing cells, whereas females will typically express those variants in a mosaic distribution determined by early X-inactivation events. This sex-based difference in ACE2 expression has unique implications for epidemiological studies designed to assess host genetic factors influencing progression from asymptomatic SARS-coV-2 infection to COVID-19. Here we present theoretical modelling of rare ACE2 coding variants documented to occur naturally in several human superpopulations and subpopulations, and show that rare variants predicted to affect the binding of ACE2 to the SARS-CoV-2 spike protein exist in people. Though the rs4646116 (p.Lys26Arg) allele is found in 1 in 70 Ashkenazi Jewish males, and in 1 in 172 non-Finnish European males, this allele is found at higher frequencies in females. Furthermore, the class of missense ACE2 alleles predicted to affect SARS-CoV-2 binding are found in aggregate among 1.43% and 2.16% of Ashkenazi males and females, respectively, as well as in 0.58% and 1.24% of European males and females outside of Finland. These alleles are rarer in other population groups, and almost absent from East Asians genotyped to date.Though we are aware that full genome-wide and exome-wide sequencing studies may ultimately be required to assess human genetic susceptibility to SARS-CoV-2 fully, we argue on the basis of strong prior probabilities that genotyping of this class of alleles is justified in cases of atypical SARS-CoV-2 diseases, such as asymptomatic super-spreaders (if any are identified), and in neonatal/paediatric-onset COVID-19 disease. Even relatively rare susceptibility factors (1% or fewer carriers) may become quantitatively important in the context of hundreds of thousands of infections. A small number of asymptomatic carriers, or a small number of super-spreaders, or a small segment of the population that is disproportionately likely to require intensive care, can magnify the medical, social and economic impacts of a pandemic of this size. The speed of the pandemic and the large number of affected cases worldwide justify efforts to identify all possible risk factors for adverse outcomes, including efforts to identify genetic susceptibility factors in human hosts.

Publisher

Cold Spring Harbor Laboratory

Reference38 articles.

1. A pneumonia outbreak associated with a new coronavirus of probable bat origin

2. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2;Nature Microbiology,2020

3. Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany;N. Engl. J. Med,2020

4. WHO. Novel Coronavirus (2019-nCoV) Situation Report – 22. World Health Organization (2020).

5. Guan, W. et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. (2020).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3