Action-based organization and function of cerebellar cortical microcircuits

Author:

Cerminara Nadia LORCID,Garwicz MartinORCID,Darch HenryORCID,Houghton ConorORCID,Marple-Horvat Dilwyn E,Apps RichardORCID

Abstract

AbstractThe cerebellum is the largest sensorimotor structure in the brain, but its mode of operation is not well understood. However, a fundamental organizational feature of the cerebellar cortex is division into elongated zones, defined by their inputs from specific parts of the inferior olive and Purkinje cell output to cerebellar and vestibular nuclei. Little is known about how the pattern of neuronal activity in zones, and their functional microcircuit subdivisions, microzones, is related to behaviour in awake animals. Here, we studied the organization of microzones within the C3 zone and their activity during a skilled forelimb reaching task in cats. Neurons in different parts of the C3 zone, functionally determined by receptive field characteristics, differed in their patterns of activity during movement. Our results suggest that the cerebellar C3 zone is organized and operates within an action-based frame of reference, with different microcircuits within the zone controlling specific muscle synergies.

Publisher

Cold Spring Harbor Laboratory

Reference122 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3