AutoTriage - An Open Source Edge Computing Raspberry Pi-based Clinical Screening System

Author:

Hegde Chaitra,Jiang Zifan,Suresha Pradyumna ByappanahalliORCID,Zelko Jacob,Seyedi Salman,Smith Monique A.,Wright David W.,Kamaleswaran Rishikesan,Reyna Matt A.,Clifford Gari D.ORCID

Abstract

AbstractWith the recent COVID-19 pandemic, healthcare systems all over the world are struggling to manage the massive increase in emergency department (ED) visits. This has put an enormous demand on medical professionals. Increased wait times in the ED increases the risk of infection transmission. In this work we present an open-source, low cost, off-body system to assist in the automatic triage of patients in the ED based on widely available hardware. The system initially focuses on two symptoms of the infection fever and cyanosis. The use of visible and far-infrared cameras allows for rapid assessment at a 1m distance, thus reducing the load on medical staff and lowering the risk of spreading the infection within hospitals. Its utility can be extended to a general clinical setting in non-emergency times as well to reduce wait time, channel the time and effort of healthcare professionals to more critical tasks and also prioritize severe cases.Our system consists of a Raspberry Pi 4, a Google Coral USB accelerator, a Raspberry Pi Camera v2 and a FLIR Lepton 3.5 Radiometry Long-Wave Infrared Camera with an associated IO module. Algorithms running in real-time detect the presence and body parts of individual(s) in view, and segments out the forehead and lip regions using PoseNet. The temperature of the forehead-eye area is estimated from the infrared camera image and cyanosis is assessed from the image of the lips in the visible spectrum. In our preliminary experiments, an accuracy of 97% was achieved for detecting fever and 77% for the detection of cyanosis, with a sensitivity of 91% and area under the receiver operating characteristic curve of 0.91. Heart rate and respiratory effort are also estimated from the visible camera.Although preliminary results are promising, we note that the entire system needs to be optimized before use and assessed for efficacy. The use of low-cost instrumentation will not produce temperature readings and identification of cyanosis that is acceptable in many situations. For this reason, we are releasing the full code stack and system design to allow others to rapidly iterate and improve the system. This may be of particular benefit in low-resource settings, and low-to-middle income countries in particular, which are just beginning to be affected by COVID-19.

Publisher

Cold Spring Harbor Laboratory

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Empowering Healthcare: Edge Computing and ML for Early Heart Attack Detection And Prevention;2024 6th International Conference on Pattern Analysis and Intelligent Systems (PAIS);2024-04-24

2. Patterns in IoT-Based Healthcare;Advances in Healthcare Information Systems and Administration;2023-12-01

3. On the Adoption of Modern Technologies to Fight the COVID-19 Pandemic: A Technical Synthesis of Latest Developments;COVID;2023-01-16

4. Resource-Coupling-Oriented Business Process Modeling and Optimal Sequencing;Lecture Notes in Electrical Engineering;2023

5. Edge computing-based internet of medical things for healthcare using deep learning;International Journal of Embedded Systems;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3