Author:
Miah Md. Ochiuddin,Rahman Md. Mahfuzur,Muhammod Rafsanjani,Farid Dewan Md.
Abstract
AbstractThe classification of motor imagery electroencephalogram (MI-EEG) is a pivotal part of the biosignal classification in the brain-computer interface (BCI) applications. Currently, this bio-engineering based technology is being employed by researchers in various fields to develop cutting edge applications. The classification of real-time MI-EEG signal is the core computing and challenging task in these applications. It is well-known that the existing classification methods are not so accurate due to the high dimensionality and dynamic behaviors of the real-time EEG data. To improve the classification performance of real-time BCI applications, this paper presents a clustering-based ensemble technique and a developed brain game that distinguishes different human thoughts. At first, we have gathered the brain signals, extracted and selected informative features from these signals to generate training and testing sets. After that, we have constructed several classifiers using Artificial Neural Network (ANN), Support Vector Machine (SVM), naïve Bayes, Decision Tree (DT), Random Forest, Bagging, AdaBoost and compared the performance of these existing approaches with suggested clustering-based ensemble technique. On average, the proposed ensemble technique improved the classification accuracy of roughly 5 to 15% compared to the existing methods. Finally, we have developed the targeted brain game employing our suggested ensemble technique. In this game, real-time EEG signal classification and prediction tabulation through animated ball are controlled via threads. By playing this game, users can control the movements of the balls via the brain signals of motor imagery movements without using any traditional input devices. All relevant codes are available via open repository at: https://github.com/mrzResearchArena/MI-EEG.
Publisher
Cold Spring Harbor Laboratory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献