Visualization of spatial gene expression in plants by modified RNAscope fluorescent in situ hybridization

Author:

Solanki ShyamORCID,Ameen GazalaORCID,Zhao Jin,Flaten Jordan,Borowicz Pawel,Brueggeman RobertORCID

Abstract

AbstractIn situ analysis of biomarkers such as DNA, RNA and proteins are important for research and diagnostic purposes. At the RNA level, plant gene expression studies rely on qPCR, RNAseq and probe-based in situhybridization (ISH). However, for ISH experiments poor stability of RNA and RNA based probes commonly results in poor detection or poor reproducibility. Recently, the development and availability of the RNAscope RNA-ISH method addressed these problems by novel signal amplification and background suppression. This method is capable of simultaneous detection of multiple target RNAs down to the single molecule level in individual cells, allowing researchers to study spatio-temporal patterning of gene expression. However, this method has not been optimized thus poorly utilized for plant specific gene expression studies which would allow for fluorescent multiplex detection. Here we provide a step-by-step method for sample collection and pretreatment optimization to perform the RNAscope assay in the leaf tissues of model monocot plant barley. We have shown the ubiquitous HvGAPH and predominantly stomatal guard cell expressed Rpg1 expression pattern in barley leaf sections and described the improve RNAcope methodology suitable for plant tissues using confocal laser microscope. By addressing the problems in the sample collection and incorporating additional sample backing steps we have significantly reduced the section detachment and experiment failure problems. Further, by reducing the time of protease treatment, we minimized the sample disintegration due to over digestion of barley tissues. Thus, we optimized the RNAscope detection method in plants to visualize the spatial expression and semi-quantification of target RNAs which can be employed in other plants such as the widely utilized model dicot plant Arabidopsis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3