Complexity of the eukaryotic dolichol-linked oligosaccharide scramblase suggested by activity correlation profiling mass spectrometry

Author:

Verchère Alice,Cowton Andrew,Jenni Aurelio,Rauch Monika,Häner Robert,Graumann Johannes,Bütikofer Peter,Menon Anant K.ORCID

Abstract

AbstractThe canonical pathway ofN-linked protein glycosylation in yeast and humans involves transfer of the oligosaccharide moiety from the glycolipid Glc3Man9GlcNAc2-PP-dolichol to select asparagine residues in proteins that have been translocated into the lumen of the endoplasmic reticulum (ER). Synthesis of Glc3Man9GlcNAc2-PP-dolichol occurs in two stages, producing first the key intermediate Man5GlcNAc2-PP-dolichol (M5-DLO) on the cytoplasmic face of the ER, followed by translocation of M5-DLO across the ER membrane to the luminal leaflet where the remaining glycosyltransfer reactions occur to complete the structure. Despite its critical importance forN-glycosylation, the scramblase protein that mediates the translocation of M5-DLO across the ER membrane has not been identified. Building on our ability to recapitulate scramblase activity in large unilamellar proteoliposomes reconstituted with a crude mixture of ER membrane proteins, we developed a mass spectrometry-based ‘activity correlation profiling’ approach to identify scramblase candidates in the yeastSaccharomyces cerevisiae. Curation of the activity correlation profiling data prioritized six polytopic ER membrane proteins as scramblase candidates, but reconstitution-based assays and gene disruption in the protistTrypanosoma bruceirevealed, unexpectedly, that none of these proteins were necessary for M5-DLO scramblase activity. Our results instead suggest the possibility that the M5-DLO scramblase may be a protein, or protein complex, whose activity is regulated at the level of quaternary structure. This key insight will aid future attempts to identify the scramblase.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3