Quantification of lysogeny caused by phage coinfections in microbial communities from biophysical principles

Author:

Luque AntoniORCID,Silveira CynthiaORCID

Abstract

AbstractTemperate phages can integrate in their bacterial host genome to form a lysogen, often modifying the phenotype of the host. Lysogens are dominant in the microbial-dense environment of the mammalian-gut. This observation contrasts with the long-standing hypothesis of lysogeny being favored in microbial communities with low densities. Here we hypothesized that phage coinfections—the most studied molecular mechanism of lysogeny in lambda phage—increases at high microbial abundances. To test this hypothesis, we developed a biophysical model of coinfection and stochastically sampled ranges of phage and bacterial concentrations, adsorption rates, lysogenic commitment times, and community diversity from marine and gut microbiomes. Based on lambda experiments, a Poisson process assessed the probability of lysogeny via coinfection in these ecosystems. In 90% of the sampled marine ecosystems, lysogeny stayed below 10% of the bacterial community. In contrast, 25% of the sampled gut communities stayed above 25% of lysogeny, representing an estimated nine trillion lysogens formed via phage coinfection in the human gut every day. The prevalence of lysogeny in the gut was a consequence of the higher densities and faster adsorption rates. In marine communities, which were characterized by lower densities and phage adsorption rates, lysogeny via coinfection was still possible for communities with long lysogenic commitments times. Our study suggests that physical mechanisms can favor coinfection and cause lysogeny at poor growth conditions (long commitment times) and in rich environments (high densities and adsorption rates).ImportancePhage integration in bacterial genomes manipulate microbial dynamics from the oceans to the human gut. This phage-bacteria interaction, called lysogeny, is well-studied in laboratory models, but its environmental drivers remain unclear. Here we quantified the frequency of lysogeny via phage coinfection—the most studied mechanism of lysogeny—by developing a biophysical model that incorporated a meta-analysis of the properties of marine and gut microbiomes. Lysogeny was found to be more frequent in high-productive environments like the gut, due to higher phage and bacterial densities and faster phage adsorption rates. At low cell densities, lysogeny via coinfection was possible for hosts with long duplication times. Our research bridges the molecular understanding of lysogeny with the ecology of complex microbial communities.

Publisher

Cold Spring Harbor Laboratory

Reference86 articles.

1. Anthenelli, M. , Jasien, E. , Edwards, R. , Bailey, B. , Felts, B. , Katira, P. , et al. (2020) Phage and bacteria diversification through a prophage acquisition ratchet. BioRxiv in review:

2. Avrani, S. , Wurtzel, O. , Sharon, I. , Sorek, R. , and Lindell, D. (2011) Genomic island variability facilitates Prochlorococcusvirus coexistence. Nature.

3. Bacteriophage adhering to mucus provide a non-host-derived immunity

4. Beckett, S.J. , Demory, D. , Coenen, A.R. , Casey, J.R. , Follett, C.L. , Dugenne, M. , et al. (2019) A day in the life of Prochloroccocus: Diel ecological oscillations of cyanobacteria, viruses and grazers in the North Pacific Subtropical Gyre. In 2019 ESA Annual Meeting (August 11--16). ESA.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Phage community involvement in fermented beverages: an open door to technological advances?;Critical Reviews in Food Science and Nutrition;2020-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3