Activation of SnRK2 by the Raf-like kinase ARK represents a common mechanism of ABA response in embryophytes

Author:

Islam Mousona,Inoue Takumi,Hiraide Mayuka,Khatun Nobiza,Jahan Akida,Kuwata Keiko,Umezawa TaishiORCID,Yotsui Izumi,Sakata YoichiORCID,Takezawa DaisukeORCID

Abstract

ABSTRACTThe Raf-like protein kinase ARK previously identified in the moss Physcomitrella patens acts as an upstream regulator of subgroup III SnRK2, the key regulator of abscisic acid (ABA) and abiotic stress responses. However, the mechanisms underlying activation of ARK by ABA and abiotic stress for the regulation of SnRK2 including the role of ABA receptor-associated group A PP2C (PP2C-A) are not understood. We identified Ser1029 as the phosphorylation site in the activation loop of ARK, which provided a possible mechanism for regulation of its activity. Analysis of transgenic ark lines expressing ARK-GFP with Ser1029-to-Ala mutation indicated that this replacement causes reductions in ABA-induced gene expression, stress tolerance and SnRK2 activity. Immunoblot analysis using an anti-phosphopeptide antibody indicated that ABA treatments rapidly stimulate Ser1029 phosphorylation in wild type. The phosphorylation profile of Ser1029 in ABA-hypersensitive ppabi1 lacking PP2C-A was similar to that in wild type, whereas little Ser1029 phosphorylation was observed in ABA-insensitive ark missense lines. Furthermore, newly isolated ppabi1 ark lines showed ABA-insensitive phenotypes similar to those of ark lines. These results indicate that ARK is a primary activator of SnRK2, preceding negative regulation by PP2C-A in bryophytes, which provides a prototypal mechanism for ABA and abiotic stress-responses in embryophytes.One sentence summaryPhysiological characterization of various moss mutants revealed a common mechanism for phytohormone responses under water deficit in all land plants.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3