Drosophila Sex Peptide Controls the Assembly of Lipid Microcarriers in Seminal Fluid

Author:

Wainwright S. Mark,Mendes Cláudia C.,Sekar Aashika,Kroeger Benjamin,Hellberg Josephine E.E.U.,Fan Shih-Jung,Pavey Abigail,Marie Pauline,Leiblich Aaron,Gandy Carina,Corrigan Laura,Patel Rachel,Wigby Stuart,Morris John F.,Goberdhan Deborah C.I.,Wilson Clive

Abstract

AbstractSeminal fluid plays an essential role in promoting male reproductive success and modulating female physiology and behaviour. In the fruit fly, Drosophila melanogaster, Sex Peptide (SP) is the best-characterised protein mediator of these effects. It is secreted from the paired male accessory glands (AGs), which, like the mammalian prostate and seminal vesicles, generate most of the seminal fluid contents. After mating, SP binds to spermatozoa and is retained in the female sperm storage organs. It is gradually released by proteolytic cleavage and induces several long-term post-mating responses including ovulation, elevated feeding and reduced receptivity to remating, primarily signalling through the SP receptor (SPR). Here, we demonstrate a previously unsuspected SPR-independent function for SP. We show that, in the AG lumen, SP and secreted proteins with membrane-binding anchors are carried on abundant, large neutral lipid-containing microcarriers, also found in other SP-expressing Drosophila species. These microcarriers are transferred to females during mating, where they rapidly disassemble. Remarkably, SP is a key assembly factor for microcarriers and is also required for the female disassembly process to occur normally. Males expressing non-functional SP mutant proteins that affect SP’s binding to and release from sperm in females also do not produce normal microcarriers, suggesting that this male-specific defect contributes to the resulting widespread defects in ejaculate function. Our data therefore reveal a novel role for SP in formation of seminal macromolecular assemblies, which may explain the presence of SP in Drosophila species, which lack the signalling functions seen in D. melanogaster.Significance StatementSeminal fluid plays a critical role in reprogramming female physiology and behaviour to promote male reproductive success. We show in the fruit fly that specific seminal proteins, including the archetypal ‘female-reprogramming’ molecule Sex Peptide, are stored in male seminal secretions in association with large neutral lipid-containing microcarriers, which rapidly disperse in females. Related structures are also observed in other Sex Peptide-expressing Drosophila species. Males lacking Sex Peptide have structurally defective microcarriers, leading to abnormal cargo loading and transfer to females. Our data reveal that this key signalling molecule in Drosophila seminal fluid is also a microcarrier assembly factor that controls transfer of other seminal factors, and that this may be a more evolutionarily ancient role of this protein.

Publisher

Cold Spring Harbor Laboratory

Reference61 articles.

1. Secretory proteins of human seminal vesicles and their relationship to lipids and sugars;Andrologia,1990

2. Seminal Fluid Characterization for Male Fertility and Prostate Cancer: Kallikrein-Related Serine Proteases and Whole Proteome Approaches

3. Occurrence and reproductive roles of hormones in seminal plasma;Basic Clin. Androl.,2017

4. Tissue kallikrein proteolytic cascade pathways in normal physiology and cancer;Biochim. Biophys. Acta,2007

5. The Drosophila accessory gland as a model for prostate cancer and other pathologies;Curr. Topics Dev. Biol.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3