The evolution of red blood cell shape in a continental radiation of fishes

Author:

Martins Brenda Oliveira,Franco-Belussi LilianORCID,Siqueira Mayara SchueroffORCID,Fernandes Carlos E.ORCID,Provete Diogo B.ORCID

Abstract

AbstractThe size and shape of Red Blood Cells (RBC) can provide key information on life history strategies in vertebrates. However, little is known about how RBC shape evolved in response to environmental factors and the role of phylogenetic relationship. Here, we analyzed RBC morphometrics in a continental radiation of fishes testing the hypothesis that phylogenetic relationship determines species occupation of morphospace. We collected blood samples of five specimens of 15 freshwater fish species from six orders and used basic stereological methods to measure cell and nucleus area, perimeter, and diameter, cell and nucleus volume, nucleus:cytoplasm ratio, and shape factor of 50 cells per specimen. Then, we conducted a phylogenetic Principal Components Analysis using a dated phylogeny and built a phylomorphospace. To test if the phylogenetic relationship predicted the phenotypic similarity of species, we calculated multivariate phylogenetic signal. We also estimated the evolution rate of RBC shape for each node and tip using ridge regression. Finally, we tested if the position in the water column influenced RBC shape using a phylogenetic GLS. RBC shape seems to have evolved in a non-stationary way because the distribution pattern of species in the phylomorphospace is independent of the phylogeny. Accordingly, the rate of evolution for shape was highly heterogeneous, with an increase in the genus Pygocentrus. Water column position does not influence RBC shape. In conclusion, RBC shape seem to have evolved in response to multiple selective pressures independent of life history characters.

Publisher

Cold Spring Harbor Laboratory

Reference53 articles.

1. A Generalized K Statistic for Estimating Phylogenetic Signal from Shape and Other High-Dimensional Multivariate Data

2. Adams, D. C. , M. L. Collyer , and A. Kaliontzopoulou . 2020. Geomorph: Software for geometric morphometric analyses. R package version 3.2.1. https://cran.r-project.org/package=geomorph.

3. Multivariate Phylogenetic Comparative Methods: Evaluations, Comparisons, and Recommendations

4. Phylogenetic Comparative Methods and the Evolution of Multivariate Phenotypes;Annual Review of Ecology, Evolution, and Systematics,2019

5. The Evolving Erythrocyte: Red Blood Cells as Modulators of Innate Immunity

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3