Abstract
AbstractGenome-wide association studies (GWAS) for atrial fibrillation (AF) have uncovered numerous disease-associated variants. Their underlying molecular mechanisms, especially consequences for mRNA and protein expression remain largely elusive. Thus, novel multiOMICs approaches are needed for deciphering the underlying molecular networks. Here, we integrated genomics, transcriptomics, and proteomics of human atrial tissue which allowed for identifying widespread effects of genetic variants on both transcript (cis eQTL) and protein (cis pQTL) abundance. We further established a novel targeted trans QTL approach based on polygenic risk scores to identify candidates for AF core genes. Using this approach, we identified two trans eQTLs and four trans pQTLs for AF GWAS hits, and elucidated the role of the transcription factor NKX2-5 as a link between the GWAS SNP rs9481842 and AF. Altogether, we present an integrative multiOMICs method to uncover trans-acting networks in small datasets and provide a rich resource of atrial tissue-specific regulatory variants for transcript and protein levels for cardiovascular disease gene prioritization.
Publisher
Cold Spring Harbor Laboratory