Specificities of and functional coordination between the two Cas6 maturation endonucleases in Anabaena sp. PCC 7120 assign orphan CRISPR arrays to three groups

Author:

Reimann Viktoria,Ziemann Marcus,Li Hui,Zhu TaoORCID,Behler Juliane,Lu Xuefeng,Hess Wolfgang R.ORCID

Abstract

AbstractThe majority of bacteria and archaea possess an RNA-guided adaptive and inheritable immune system against viruses and other foreign genetic elements that consists of clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins. In most CRISPR-Cas systems, the maturation of CRISPR-derived small RNAs (crRNAs) is essential for functionality. In some bacteria, multiple instances of cas gene-free (orphan) repeat-spacer arrays exist, while additional instances of arrays that are linked to cas gene cassettes are present elsewhere in the genome.In the cyanobacterium Anabaena sp. PCC 7120, ten CRISPR-Cas repeat-spacer arrays are present, but only two cas gene cassettes plus a Tn7-associated eleventh array are observed. In this study, we deleted the two cas6 genes alr1482 (Type III-D) or alr1566 (Type I-D) and tested the specificities of the two corresponding enzymes in the resulting mutant strains, as recombinant proteins and in a cell-free transcription-translation system. The results assign the direct repeats (DRs) to three different groups. While Alr1566 is specific for one group, Alr1482 has a higher preference for the DRs of the second group but can also cleave those of the first group. We found that this cross-recognition limits crRNA accumulation for the Type I-D system in vivo.We also show that the DR of the cas gene-free CRISPR array of cyanophage N-1 is processed by these enzymes, suggesting that it is fully competent in association with host-encoded Cas proteins. The data support a strong tendency for array fragmentation in multicellular cyanobacteria and disfavor other possibilities, such as the nonfunctionality of these orphan repeat-spacer arrays. Our data demonstrate the functional coordination of Cas6 endonucleases with both neighboring and remote repeat-spacer arrays in the CRISPR-Cas system of cyanobacteria.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3