Processivity of molecular motors under vectorial loads

Author:

Khataee Hamid,Neufeld Zoltan,Mahamdeh Mohammed

Abstract

AbstractMolecular motors are cellular machines that drive the spatial organisation of the cells by transporting cargoes along intracellular filaments. Although the mechanical properties of single molecular motors are relatively well characterised, it remains elusive how the three-dimensional geometry of a load imposed on a motor affects its processivity, i.e., the average distance that a motor moves per interaction with a filament. Here, we theoretically explore this question for a single kinesin molecular motor by analysing the load-dependence of the stepping and detachment processes. We find that the processivity of kinesin increases with lowering the load angle between kinesin and microtubule filament, due to the deceleration of the detachment rate. When the load angle is large, the processivity is predicted to enhance with accelerating the stepping rate, through an optimal distribution of the load over the kinetic transition rates underlying a mechanical step of the motor. These results provide new insights into understanding of the design of potential synthetic biomolecular machines that can travel long distances with high velocities.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3