Ligand Sensing Enhances Bacterial Flagellar Motor Output via Stator Recruitment

Author:

Naaz Farha,Agrawal Megha,Chakraborty Soumyadeep,Tirumkudulu Mahesh S.,Venkatesh K.V.

Abstract

AbstractThe phenomenon of chemotaxis in bacteria, where the cells migrate towards or away from chemicals, has been extensively studied in the past. For flagellated bacteria such as Escherichia coli, a change in chemical concentration in its environment is sensed by a chemoreceptor and communicated via a well-characterised signalling pathway to the flagellar motor. It has been widely accepted that the signals change the rotation bias of the motor without influencing the motor speed. Here, we present results to the contrary and show that the bacteria is also capable of modulating motor speed on merely sensing a ligand. Step changes in concentration of non-metabolisable ligand cause temporary recruitment of stators leading to a momentary increase in motor speeds. For metabolisable ligand, the combined effect of sensing and metabolism leads to higher motor speeds for longer durations. Swimming speeds measured at the population level corroborate the observations. Experiments performed with mutant strains delineate the role of metabolism and sensing in the modulation of motor speed and show how speed changes along with changes in bias can significantly enhance bacteria’s response to changes in its environment.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3