Interspecies differences in proteome turnover kinetics are correlated with lifespans and energetic demands

Author:

Swovick Kyle,Firsanov Denis,Welle Kevin A.,Hryhorenko Jennifer R.,Wise John P.,George Craig,Sformo Todd L.,Seluanov Andrei,Gorbunova Vera,Ghaemmaghami SinaORCID

Abstract

AbstractCells continually degrade and replace damaged and old proteins. However, the high energetic demand of protein turnover generates reactive oxygen species (ROS) that compromise the long-term health of the proteome. Thus, the relationship between aging, protein turnover and energetic demand remains unclear. Here, we used a proteomic approach to measure rates of protein turnover within primary fibroblasts isolated from a number of species with diverse lifespans including the longest-lives rodent, the naked mole rat and the longest-lived mammal, the bowhead whale. We show that organismal lifespan is negatively correlated with turnover rates of highly abundant proteins. In comparison to mice, cells from long-lived naked mole rats have slower rates of protein turnover, lower levels of ATP production and reduced ROS levels. Despite having slower rates of protein turnover, naked mole rat cells tolerate protein misfolding stress more effectively than mouse cells. We suggest that in lieu of rapid constitutive turnover, long-lived species may have evolved more energetically efficient mechanisms for selective detection and clearance of damaged proteins.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3