Novel class of OTU deubiquitinases regulate substrate ubiquitination upon Legionella infection

Author:

Shin Donghyuk,Bhattacharya Anshu,Cheng Yi-Lin,Alonso Marta Campos,Mehdipour Ahmad Reza,van der Heden van Noort Gerbrand J.,Ovaa Huib,Hummer Gerhard,Dikic Ivan

Abstract

AbstractLegionella pneumophila is a gram-negative pathogenic bacterium that causes Legionaries’ disease. The Legionella genome codes more than 300 effector proteins able to modulate host-pathogen interactions during infection. Among them are also enzymes altering the host-ubiquitination system including bacterial ligases and deubiquitinases. In this study, based on homology-detection screening on 305 Legionella effector proteins, we identified two LegionellaOTU-like deubiquitinases (LOT; LotB (Lpg1621/Ceg23) and LotC (Lpg2529), LotA (Lpg2248/Lem21) is already known). A crystal structure of LotC catalytic core (LotC14-310) was determined at 2.4 Å and compared with other OTU deubiquitinases, including LotB. Unlike the classical OTU-family, the structures of Legionella OTU-family (LotB and LotC) shows an extended helical lobe between the Cys-loop and the variable loop, which define a novel class of OTU-deubiquitinase. Despite structural differences in their helical lobes, both LotB and LotC interact with ubiquitin. LotB has an additional ubiquitin binding site (S1’) enabling specific cleavage of Lys63-linked poly-ubiquitin chains. By contrast, LotC only contains the S1 site and cleaves different species of ubiquitin chains. MS analysis of catalytically inactive LotB and LotC identified different categories of host-substrates for these two related DUBs. Together, our results provide new structural insights of bacterial OTU deubiquitinases and indicate distinct roles of bacterial deubiquitinases in host-pathogen interactions.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3