Alternative splicing is a developmental switch for hTERT expression

Author:

Penev Alex,Bazley Andrew,Shen Michael,Boeke Jef D.ORCID,Savage Sharon A.ORCID,Sfeir Agnel

Abstract

High telomerase activity is restricted to the blastocyst stage of embryonic development when telomere length is reset, and is characteristic of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). However, the pathways involved in telomerase regulation as a function of pluripotency remain unknown. To explore hTERT transcriptional control, we compare genome-wide interactions (4C-seq) and chromatin accessibility (ATAC-seq) between human ESCs and epithelial cells and identify several putative hTERT cis-regulatory elements. CRISPR/Cas9-mediated deletion of candidate elements in ESCs reduces the levels of hTERT mRNA but does not abolish telomerase expression, thus implicating post-transcriptional processes in telomerase regulation. In agreement with this hypothesis, we find an hTERT splice variant lacking exon-2 and prone to degradation, to be enriched in differentiated cells but absent from ESCs. In addition, we show that forced retention of exon-2 prevents telomerase silencing during differentiation. Lastly, we highlight a role for the splicing co-factor SON in hTERT exon-2 inclusion and identify a SON mutation in a Dyskeratosis congenita patient with short telomeres and decreased telomerase activity. Altogether, our data uncover a novel alternative splice switch that is critical for telomerase activity during development.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3