Author:
Liang Zhenlan,Li Min,Zheng Ruiqing,Tian Yu,Yan Xuhua,Chen Jin,Wu Fang-Xiang,Wang Jianxin
Abstract
AbstractAccurate identification of cell types from single-cell RNA sequencing (scRNA-seq) data plays a critical role in a variety of scRNA-seq analysis studies. It corresponds to solving an unsupervised clustering problem, in which the similarity measurement between cells in a high dimensional space affects the result significantly. Although many approaches have been proposed recently, the accuracy of cell type identification still needs to be improved. In this study, we proposed a novel single-cell clustering framework based on similarity learning, called SSRE. In SSRE, we model the relationships between cells based on subspace assumption and generate a sparse representation of the cell-to-cell similarity, which retains the most similar neighbors for each cell. Besides, we adopt classical pairwise similarities incorporated with a gene selection and enhancement strategy to further improve the effectiveness of SSRE. For performance evaluation, we applied SSRE in clustering, visualization, and other exploratory data analysis processes on various scRNA-seq datasets. Experimental results show that SSRE achieves superior performance in most cases compared to several state-of-the-art methods.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献