Succinct Dynamic de Bruijn Graphs

Author:

Alipanahi Bahar,Kuhnle Alan,Puglisi Simon J.,Salmela Leena,Boucher Christina

Abstract

AbstractMotivationThe de Bruijn graph is one of the fundamental data structures for analysis of high throughput sequencing data. In order to be applicable to population-scale studies, it is essential to build and store the graph in a space- and time-efficient manner. In addition, due to the ever-changing nature of population studies, it has become essential to update the graph after construction e.g. add and remove nodes and edges. Although there has been substantial effort on making the construction and storage of the graph efficient, there is a limited amount of work in building the graph in an efficient and mutable manner. Hence, most space efficient data structures require complete reconstruction of the graph in order to add or remove edges or nodes.ResultsIn this paper we present DynamicBOSS, a succinct representation of the de Bruijn graph that allows for an unlimited number of additions and deletions of nodes and edges. We compare our method with other competing methods and demonstrate that DynamicBOSS is the only method that supports both addition and deletion and is applicable to very large samples (e.g. greater than 15 billion k-mers). Competing dynamic methods e.g., FDBG (Crawford et al., 2018) cannot be constructed on large scale datasets, or cannot support both addition and deletion e.g., BiFrost (Holley and Melsted, 2019).AvailabilityDynamicBOSS is publicly available at https://github.com/baharpan/dynboss.Contactbaharpan@ufl.edu

Publisher

Cold Spring Harbor Laboratory

Reference28 articles.

1. Rainbowfish: A succinct colored de Bruijn graph representation;In: Leibniz International Proceedings in Informatics (LIPIcs),2017

2. Bowe, A. , Onodera, T. , Sadakane, K. , and Shibuya, T. (2012). Succinct de Bruijn graphs. In International Workshop on Algorithms in Bioinformatics (WABI), pages 225–235. Springer.

3. Burrows, M. and Wheeler, D. (1994). A block sorting lossless data compression algorithm. Technical Report 124, Digital Equipment Corporation, Palo Alto, California.

4. Chikhi, R. and Rizk, G. (2013). Space-efficient and exact de Bruijn graph representation based on a Bloom filter. Algorithms for Molecular Biology., 8(22).

5. Succinct data structures for assembling large genomes

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3