Abstract
AbstractTo generate new vessels, endothelial cells (ECs) form invadosomes, which are actin-based microdomains with a proteolytic activity that degrade the basement membrane. We previously demonstrated that ECs form linear invadosomes in fibrillar type I collagen context. In this study, we aim to investigate the molecular mechanisms by which ECs guides angiogenesis in a fibrillar type I collagen context. We found that Discoidin Domain Receptor 2 (DDR2) is the collagen receptor tyrosine kinase required to form linear invadosomes in ECs. We further demonstrated that it acts in synergy with VEGF to promote extracellular matrix degradation. We highlighted the involvement of an interaction between DDR2 and the matrix metalloproteinase MMP14 in this process. Finally, using in vitro andex-vivoangiogenesis assays, we demonstrated a pro-angiogenic function of DDR2 in a collagen-rich microenvironment. This study allows us to propose DDR2-dependent linear invadosomes as targets to modulate angiogenesis.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献