Isolation and characterization of multi-protein complexes enriched in the K-Cl co-transporter 2 from brain plasma membranes

Author:

Smalley Joshua L.,Kontou Georgina,Choi Catherine,Ren Qiu,Albrecht DavidORCID,Abiraman Krithika,Rodriguez Santos Miguel A.,Bope Christopher E.,Deeb Tarek Z.,Davies Paul A.,Brandon Nicholas J.,Moss Stephen J.

Abstract

ABSTRACTKcc2 plays a critical role in determining the efficacy of synaptic inhibition, however, the cellular mechanism neurons use to regulate its membrane trafficking, stability and activity are ill-defined. To address these issues, we used affinity purification to isolate stable multi-protein complexes of Kcc2 from the plasma membrane of murine forebrain. We resolved these using Blue-native polyacrylamide gel electrophoresis (BN-PAGE) coupled to LC-MS/MS. Purified Kcc2 migrated as distinct molecular species of 300, 600 and 800 kDa following BN-PAGE. In excess of 90% coverage of the soluble N and C-termini of Kcc2 was obtained. The 300kDa species largely contained Kcc2, which is consistent with a dimeric quaternary structure for this transporter. Intriguingly, lower levels of Kcc1 were also found in this species suggesting the existence of “mixed” Kcc2/Kcc1 heterodimers. The 600 and 800 kDa species represented stable multi-protein complexes of Kcc2. We identified a set of novel structural, ion transporting and signaling protein interactors, that are present at both excitatory and inhibitory synapses, consistent with the proposed association of Kcc2. These included spectrins, ankyrins, and the IP3 receptor. We also identified interactors more directly associated with phosphorylation; Akap5 and Lmtk3. Finally, we used LC-MS/MS on highly purified endogenous plasma membrane Kcc2 to detect phosphorylation sites. We detected 11 sites with high confidence, including known and novel sites. Collectively our experiments demonstrate that Kcc2 is associated with components of the neuronal cytoskeleton and signaling molecules that may act to regulate transporter membrane trafficking, stability, and activity.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3