Abstract
SummaryAll neurons are covered in a thick layer of carbohydrates called glycans. Glycans are modified during neurological processes and are thought to play a role in neuronal communication. We develop a voltage imaging platform for analyzing functional connectivity changes using simultaneous voltage recordings in small populations of neurons. We validate this platform using a culture model of development as well as with several pharmacological interventions. Using this platform, we show that ablation of SNA-binding glycans results in loss of functional connectivity in mouse hippocampal neurons, while ablation of MAL II binding glycans minimally perturbs functional connectivity. Altogether, our data reveal that subpopulations of glycans play different roles in maintenance of electrophysiology and provide a platform for modeling changes in functional connectivity with simultaneous voltage recordings.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献