Abstract
AbstractFree energy is arguably the most important property of molecular systems. Despite great progress in both its efficient estimation by scoring functions/potentials and more rigorous computation based on extensive sampling, we remain far from accurately predicting and manipulating biomolecular structures and their interactions. There are fundamental limitations, including accuracy of interaction description and difficulty of sampling in high dimensional space, to be tackled. Computational graph underlies major artificial intelligence platforms and is proven to facilitate training, optimization and learning. Combining autodifferentiation, coordinates transformation and generalized solvation free energy theory, we construct a computational graph infrastructure to realize seamless integration of fully trainable local free energy landscape with end to end differentiable iterative free energy optimization. This new framework greatly improves efficiency by replacing local sampling with differentiation. Its specific implementation in protein structure refinement achieves superb efficiency and competitive accuracy when compared with state of the art all-atom mainstream methods.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Evaluation of model refinement in
CASP14;Proteins: Structure, Function, and Bioinformatics;2021-07-29