Aerial High-Throughput Phenotyping Enabling Indirect Selection for Grain Yield at the Early-generation Seed-limited Stages in Breeding Programs

Author:

Krause Margaret R.ORCID,Mondal Suchismita,Crossa José,Singh Ravi P.,Pinto Francisco,Haghighattalab Atena,Shrestha Sandesh,Rutkoski Jessica,Gore Michael A.ORCID,Sorrells Mark E.,Poland JesseORCID

Abstract

ABSTRACTBreeding programs for wheat and many other crops require one or more generations of seed increase before replicated yield trials can be sown. Extensive phenotyping at this stage of the breeding cycle is challenging due to the small plot size and large number of lines under evaluation. Therefore, breeders typically rely on visual selection of small, unreplicated seed increase plots for the promotion of breeding lines to replicated yield trials. With the development of aerial high-throughput phenotyping technologies, breeders now have the ability to rapidly phenotype thousands of breeding lines for traits that may be useful for indirect selection of grain yield. We evaluated early generation material in the irrigated bread wheat (Triticum aestivum L.) breeding program at the International Maize and Wheat Improvement Center to determine if aerial measurements of vegetation indices assessed on small, unreplicated plots were predictive of grain yield. To test this approach, two sets of 1,008 breeding lines were sown both as replicated yield trials and as small, unreplicated plots during two breeding cycles. Vegetation indices collected with an unmanned aerial vehicle in the small plots were observed to be heritable and moderately correlated with grain yield assessed in replicated yield trials. Furthermore, vegetation indices were more predictive of grain yield than univariate genomic selection, while multi-trait genomic selection approaches that combined genomic information with the aerial phenotypes were found to have the highest predictive abilities overall. A related experiment showed that selection approaches for grain yield based on vegetation indices could be more effective than visual selection; however, selection on the vegetation indices alone would have also driven a directional response in phenology due to confounding between those traits. A restricted selection index was proposed for improving grain yield without affecting the distribution of phenology in the breeding population. The results of these experiments provide a promising outlook for the use of aerial high-throughput phenotyping traits to improve selection at the early-generation seed-limited stage of wheat breeding programs.

Publisher

Cold Spring Harbor Laboratory

Reference64 articles.

1. Development and evaluation of a field-based high-throughput phenotyping platform;Func. Plant Biol,2014

2. Field high-throughput phenotyping: the new crop breeding frontier

3. Spectral Reflectance Indices as a Potential Indirect Selection Criteria for Wheat Yield under Irrigation

4. On the effectiveness of early generation selection in self-pollinated crops;Crop Sci,2003

5. Brennan, J.P. (1988). An economic investigation of wheat breeding programmes. Agricultural Economics Bulletin 35, Department of Agricultural Economics and Business Management, University of New England, Armidale, NSW, Australia.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3