Deletion of the mitochondrial matrix protein cyclophilin-D prevents parvalbumin interneuron dysfunction and cognitive deficits in a mouse model of NMDA hypofunction

Author:

Phensy AarronORCID,Lindquist Kathy L.ORCID,Lindquist Karen A.,Bairuty DaniaORCID,Gauba EshaORCID,Guo Lan,Tian Jing,Du Heng,Kroener SvenORCID

Abstract

AbstractRedox dysregulation and oxidative stress are final common pathways in the pathophysiology of a variety of psychiatric disorders, including schizophrenia. Oxidative stress causes dysfunction of GABAergic parvalbumin-positive interneurons (PVI), which are crucial for the coordination of neuronal synchrony during sensory- and cognitive-processing. Mitochondria are the main source of reactive oxygen species (ROS) in neurons and they control synaptic activity through their roles in energy production and intracellular calcium homeostasis. We have previously shown that in male mice transient blockade of NMDA receptors during development (subcutaneous injections of 30 mg/kg ketamine (KET) on postnatal days 7, 9, and 11) results in long-lasting alterations in synaptic transmission and reduced parvalbumin expression in the adult prefrontal cortex (PFC), contributing to a behavioral phenotype that mimics multiple symptoms associated with schizophrenia. These changes correlate with oxidative stress and impaired mitochondrial function in both PVI and pyramidal cells. Here, we show that genetic deletion (Ppif-/-) of the mitochondrial matrix protein cyclophilin D (CypD) prevents perinatal KET-induced increases in ROS and the resulting deficits in PVI function, and changes in excitatory and inhibitory synaptic transmission in the PFC. Deletion of CypD also prevented KET-induced behavioral deficits in cognitive flexibility, social interaction, and novel object recognition. Taken together, these data highlight how mitochondrial activity may play an integral role in modulating PVI-mediated cognitive processes.Significance StatementMitochondria are important modulators of oxidative stress and cell function, yet how mitochondrial dysfunction affects cell activity and synaptic transmission in psychiatric illnesses is not well understood. NMDA receptor blockade with ketamine during development causes oxidative stress, dysfunction of parvalbumin-positive interneurons (PVI), and long-lasting physiological and behavioral changes. Here we show that mice deficient for the mitochondrial matrix protein cyclophilin D show robust protection from PVI dysfunction following perinatal NMDAR-blockade. Mitochondria serve as an essential node for a number of stress-induced signaling pathways and our experiments suggest that failure of mitochondrial redox regulation can contribute to PVI dysfunction.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3