Cryo-EM structures of human TRPC5 reveal interaction of a xanthine-based TRPC1/4/5 inhibitor with a conserved lipid binding site

Author:

Wright David J.ORCID,Simmons Katie J.ORCID,Johnson Rachel M.,Beech David J.ORCID,Muench Stephen P.ORCID,Bon Robin S.ORCID

Abstract

AbstractTRPC1/4/5 channels are non-specific cation channels implicated in a wide variety of diseases, and TRPC1/4/5 inhibitors have recently entered the first clinical trials. However, fundamental and translational studies require a better understanding of TRPC1/4/5 channel regulation by endogenous and exogenous factors. Although several potent and selective TRPC1/4/5 modulators have been reported, the paucity of mechanistic insights into their modes-of-action remains a barrier to the development of new chemical probes and drug candidates. The xanthine class of modulators includes the most potent and selective TRPC1/4/5 inhibitors described to date, as well as TRPC5 activators. Our previous studies suggest that xanthines interact with a, so far, elusive pocket of TRPC1/4/5 channels that is essential to channel gating. Targeting this pocket may be a promising strategy for TRPC1/4/5 drug discovery. Here we report the first structure of a small molecule-bound TRPC1/4/5 channel – human TRPC5 in complex with the xanthine Pico145 – to 3.0 Å. We found that Pico145 binds to a conserved lipid binding site of TRPC5, where it displaces a bound phospholipid. Our findings explain the mode-of-action of xanthine-based TRPC1/4/5 modulators, and suggest a structural basis for TRPC1/4/5 modulation by endogenous factors such as (phospho)lipids and Zn2+ ions. These studies lay the foundations for the structure-based design of new generations of TRPC1/4/5 modulators.

Publisher

Cold Spring Harbor Laboratory

Reference46 articles.

1. TRPC1, a human homolog of a Drosophila store-operated channel.

2. A Unified Nomenclature for the Superfamily of TRP Cation Channels

3. The TRP Superfamily of Cation Channels;Sci. STKE,2005

4. In pursuit of small molecule chemistry for calcium‐permeable non‐selective TRPC channels – mirage or pot of gold?

5. Wang, H. et al. TRPC channels: Structure, function, regulation and recent advances in small molecular probes. Pharmacol. Ther. 107497 (2020).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3