Collateral sensitivity interactions between antibiotics depend on local abiotic conditions

Author:

Allen Richard C.ORCID,Pfrunder-Cardozo Katia R.,Hall Alex R.

Abstract

AbstractMutations conferring resistance to one antibiotic can increase (cross resistance) or decrease (collateral sensitivity) resistance to others. Drug combinations displaying collateral sensitivity could be used in treatments that slow resistance evolution. However, lab-to-clinic translation requires understanding whether collateral effects are robust across different environmental conditions. Here, we isolated and characterized resistant mutants of Escherichia coli using five antibiotics, before measuring collateral effects on resistance to other antibiotics. During both isolation and phenotyping, we varied conditions in ways relevant in nature (pH, temperature, bile). This revealed local abiotic conditions modified expression of resistance against both the antibiotic used during isolation and other antibiotics. Consequently, local conditions influenced collateral sensitivity in two ways: by favouring different sets of mutants (with different collateral sensitivities), and by modifying expression of collateral effects for individual mutants. These results place collateral sensitivity in the context of environmental variation, with important implications for translation to real-world applications.

Publisher

Cold Spring Harbor Laboratory

Reference60 articles.

1. World Health Organization (WHO). Antimicrobial Resistance Global Report on Surveillance. 1–9 (2014).

2. A new antibiotic kills pathogens without detectable resistance;Nature,2015

3. Novel classes of antibiotics or more of the same?

4. PERSPECTIVE: Evolutionary biology and the avoidance of antimicrobial resistance

5. Lázár, V. et al. Bacterial evolution of antibiotic hypersensitivity. Mol. Syst. Biol. 9, (2013).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3