Scalable hierarchical clustering by composition rank vector encoding and tree structure

Author:

Lai Xiao,Tian PuORCID

Abstract

AbstractSupervised machine learning, especially deep learning based on a wide variety of neural network architectures, have contributed tremendously to fields such as marketing, computer vision and natural language processing. However, development of un-supervised machine learning algorithms has been a bottleneck of artificial intelligence. Clustering is a fundamental unsupervised task in many different subjects. Unfortunately, no present algorithm is satisfactory for clustering of high dimensional data with strong nonlinear correlations. In this work, we propose a simple and highly efficient hierarchical clustering algorithm based on encoding by composition rank vectors and tree structure, and demonstrate its utility with clustering of protein structural domains. No record comparison, which is an expensive and essential common step to all present clustering algorithms, is involved. Consequently, it achieves linear time and space computational complexity hierarchical clustering, thus applicable to arbitrarily large datasets. The key factor in this algorithm is definition of composition, which is dependent upon physical nature of target data and therefore need to be constructed case by case. Nonetheless, the algorithm is general and applicable to any high dimensional data with strong nonlinear correlations. We hope this algorithm to inspire a rich research field of encoding based clustering well beyond composition rank vector trees.

Publisher

Cold Spring Harbor Laboratory

Reference14 articles.

1. Least squares quantization in PCM

2. Mean shift: A robust approach toward feature space analysis;P., M;IEEE Transaction on Pattern Analysis and Machine Intelligence,2002

3. Ester, M. ; Kriegel, H.-P. ; Sander, J. ; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noises. 1996, 226–31.

4. Cure: an efficient clustering algorithm for large databases

5. Clustering by Passing Messages Between Data Points

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3