A Deep Learning Pipeline for Nucleus Segmentation

Author:

Zaki George,Gudla Prabhakar R.,Lee KyunghunORCID,Kim Justin,Ozbun Laurent,Shachar Sigal,Gadkari Manasi,Sun Jing,Fraser Iain D.C.ORCID,Franco Luis M.ORCID,Misteli TomORCID,Pegoraro GianlucaORCID

Abstract

AbstractDeep learning is rapidly becoming the technique of choice for automated segmentation of nuclei in biological image analysis workflows. In order to evaluate the feasibility of training nuclear segmentation models on small, custom annotated image datasets that have been augmented, we have designed a computational pipeline to systematically compare different nuclear segmentation model architectures and model training strategies. Using this approach, we demonstrate that transfer learning and tuning of training parameters, such as the composition, size and pre-processing of the training image dataset, can lead to robust nuclear segmentation models, which match, and often exceed, the performance of existing, off-the-shelf deep learning models pre-trained on large image datasets. We envision a practical scenario where deep learning nuclear segmentation models trained in this way can be shared across a laboratory, facility, or institution, and continuously improved by training them on progressively larger and varied image datasets. Our work provides computational tools and a practical framework for deep learning-based biological image segmentation using small annotated image datasets.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3