Unsupervised explainable AI for the collective analysis of a massive number of genome sequences: various examples from the small genome of pandemic SARS-CoV-2 to the human genome

Author:

Ikemura Toshimichi,Iwasaki Yuki,Wada Kennosuke,Wada Yoshiko,Abe Takashi

Abstract

ABSTRACTIn genetics and related fields, huge amounts of data, such as genome sequences, are accumulating, and the use of artificial intelligence (AI) suitable for big data analysis has become increasingly important. Unsupervised AI that can reveal novel knowledge from big data without prior knowledge or particular models is highly desirable for analyses of genome sequences, particularly for obtaining unexpected insights. We have developed a batch-learning self-organizing map (BLSOM) for oligonucleotide compositions that can reveal various novel genome characteristics. Here, we explain the data mining by the BLSOM: unsupervised and explainable AI. As a specific target, we first selected SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) because a large number of the viral genome sequences have been accumulated via worldwide efforts. We analyzed more than 0.6 million sequences collected primarily in the first year of the pandemic. BLSOMs for short oligonucleotides (e.g., 4~6-mers) allowed separation into known clades, but longer oligonucleotides further increased the separation ability and revealed subgrouping within known clades. In the case of 15-mers, there is mostly one copy in the genome; thus, 15-mers appeared after the epidemic start could be connected to mutations. Because BLSOM is an explainable AI, BLSOM for 15-mers revealed the mutations that contributed to separation into known clades and their subgroups. After introducing the detailed methodological strategies, we explained BLSOMs for various topics. The tetranucleotide BLSOM for over 5 million 5-kb fragment sequences derived from almost all microorganisms currently available and its use in metagenome studies. We also explained BLSOMs for various eukaryotes, such as fishes, frogs and Drosophila species, and found a high separation ability among closely related species. When analyzing the human genome, we found evident enrichments in transcription factor-binding sequences (TFBSs) in centromeric and pericentromeric heterochromatin regions. The tDNAs (tRNA genes) were separated by the corresponding amino acid.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3