OmpF Downregulation Mediated by Sigma E or OmpR Activation Confers Cefalexin Resistance in Escherichia coli in the Absence of Acquired β-Lactamases

Author:

Alzayn Maryam,Dulyayangkul Punyawee,Satapoomin Naphat,Heesom Kate J.,Avison Matthew B.

Abstract

AbstractCefalexin is a widely used 1st generation cephalosporin, and resistance in Escherichia coli is caused by Extended-Spectrum (e.g. CTX-M) and AmpC β-lactamase production and therefore frequently coincides with 3rd generation cephalosporin resistance. However, we have recently identified large numbers of E. coli isolates from human infections, and from cattle, where cefalexin resistance is not β-lactamase mediated. Here we show, by studying laboratory selected mutants, clinical isolates, and isolates from cattle, that OmpF porin disruption or downregulation is a major cause of cefalexin resistance in E. coli. Importantly, we identify multiple regulatory mutations that cause OmpF downregulation. In addition to mutation of ompR, already known to downregulate OmpF and OmpC porin production, we find that rseA mutation, which strongly activates the Sigma E regulon, greatly increasing DegP production, which degrades OmpF, OmpC and OmpA porins. Furthermore, we reveal that mutations affecting lipopolysaccharide structure, exemplified by the loss of GmhB, essential for lipopolysaccharide heptosylation, also modestly activate DegP production, resulting in OmpF degradation. Remarkably, given the critical importance attached to such systems for normal E. coli physiology, we find evidence for DegP-mediated OmpF downregulation, gmhB and rseA loss of function mutation in E. coli isolates derived from human infections. Finally, we show that these regulatory mutations enhance the ability of group 1 CTX-M β-lactamase to confer reduced carbapenem susceptibility, particularly those mutations that cause OmpC in addition to OmpF downregulation.

Publisher

Cold Spring Harbor Laboratory

Reference32 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3