A novel mouse model of focal limbic seizures that reproduces behavioral impairment associated with cortical slow wave activity

Author:

Sieu Lim-Anna,Singla Shobhit,Sharafeldin Abdelrahman,Chandrasekaran Ganesh,Valcarce-Aspegren Marcus,Niknahad Ava,Fu Ivory,Doilicho Natnael,Gummadavelli Abhijeet,McCafferty Cian,Crouse Richard,Perrenoud Quentin,Picciotto Marina,Cardin Jessica,Blumenfeld Hal

Abstract

AbstractPatients with focal temporal lobe seizures often experience loss of consciousness. In humans, this loss of consciousness has been shown to be positively correlated with EEG neocortical slow waves, similar to those seen in non-REM sleep. Previous work in rat models of temporal lobe seizures suggests that decreased activity of subcortical arousal systems cause depressed cortical function during seizures. However, these studies were performed under light anesthesia, making it impossible to correlate behavior, and therefore consciousness, to electrophysiologic data. Further, the genetic and molecular toolkits allowing for precise study of the underlying neural circuitry are much more developed in mice than in rats. Here, we describe an awake-behaving, head-fixed mouse model of temporal lobe seizures with both spared and impaired behavior reflecting level of consciousness. Water-restricted mice were head-fixed on a running wheel and trained to associate an auditory stimulus to the delivery of a drop of water from a dispenser. To investigate the effect of seizures on behavior, seizures were electrically induced by stimulating either the left or right hippocampus via a chronically-implanted electrode, while mice were performing the task. Behavior was measured by monitoring lick responses to the auditory stimulus and running speed on the wheel. Further, local field potentials (LFP) signals were simultaneously recorded from hippocampus and orbitofrontal cortex (OFC). Induced focal seizures were 5-30s in duration, and repeatable for several weeks (n=20 animals). Behavioral responses showed a decrease in lick rate to auditory stimulus, and decreased running speed during seizures (p<0.01, n=20 animals). Interestingly, licking response to sound could vary from being impaired to normal during seizures. We found that behavioral impairment is correlated with large amplitude cortical slow-wave activity in frontal cortex, as seen in patients with temporal lobe seizures. These results suggest that induced focal limbic seizures in the mouse can impair consciousness and that the impaired consciousness is correlated with depressed cortical function resembling slow wave sleep. This novel mouse model has similar characteristics with previously studied rat models and human temporal lobe seizures. By leveraging the genetic and molecular techniques available in the mouse, this model can be used to further uncover fundamental mechanisms for loss of consciousness in focal seizures.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3